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Semimetals: basic guestions

. Is it possible for a gapless system to have a defining
topological feature?

. How can one distinguish phases of a system with gapless
degrees of freedom?

Weyl semimetal, as an example
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Brief review: Dirac equation

. Dirac equation for a spin-1/2 particle with mass ™

(1v"0, —m) =0

{7“, ”yy} — 277’“” Dirac algebra
. Weyl representation:
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Brief review: Dirac equation

. In momentum space, with 71t = 0 = 4
(V'pu) ¥ =0

(v"po +7'pi) ¥ =0

(V' E —+'p) ¢ =0

. Using the Weyl representation
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Weyl semimetals

Valence and conduction bands touch
Non-degenerate band: time-reversal symmetry is broken

One possible Hamiltonian

H=— Z 2t, (cosky —coskg) +m (2 —cosk, — cosk,)]| o, + 2t, sink,o, + 2t,sink,o,
k

Expanding around k — + (ko,0,0)

Hy = vy x|, 02 + vy [px], 0y + 02 [p2], 0

. where

m .
H- = TP -0 Weylequation
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How robust are the Weyl nodes?

. The system is 3D! Expanding around a node
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. Solve for £ =0
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Magnetic Monopoles (review)

. What is the magnetic charge of a Dirac node?

Consider the eingestatesof H = Kk - o
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Topological Response: Chiral
Anomaly

. Breaks down the conservation of particles at a given Weyl

point | ie A
Hp/r = ?Zﬁvwz/RU' (V — T) Yr/R

. Independent equations for R/L ?

. QFT: Cut-off violates conservation (Adler-Bell-Jackiw

anomaly) OnpL _ iiE B

ot h?

. Another derivation: Starting with B in the z-direction

" Landau Levels

[ ]
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Topological Response: Chiral
Anomaly

. Solving the Dirac equation with an applied magnetic field,

E E
hc W pr MR W
B =1\ % k k
e ‘ *
Ny 1 | |
A 2712
B FIG. 2. Landau levels at Weyl Nodes. Filled (empty) circles denote
occupied (empty) LLs. Each node has non-chiral LLs that disperse
parabolically in the field direction (here z) as well as a single chi-
ral LL that disperses according to the node chirality (red, blue). A
chemical potential imbalance between the nodes leads to a net cur-
EO (k . n) — ::,Uk - 1N rent flowing along the field, even for spatially uniform .

2 B
E, (k-n) = hvgsign (n) nje +(k-n)?, n==+1,+2, ...

09 he



Topological Response: Chiral

Anomaly E
Effect of the electric field W#L #RW
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Topological Response: Anomalous
Hall Effect

Using the Lorentz force

dp
— =pgE +J B
Jt Pl +J g X

and the basic equations for the QHE
Jy=E x Gy pag =B -Gpg

_ (B-Gy)E—(B-Gy)E+ (B-E)Gy

— (B-E)Gpg
dp e — e k.
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Is Graphene a Topological
Semimetal?

If just nearest-neighbor hopping is taken into account,

H=~t > (af by;+He)
(

1,j),0
. Sublattice symmetry: changing the sign of
amplitudes on one sublattice reverses the sign

1D: Class Alll, edge states with zero-energy
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Experimental Proposal

. Goal: distinguish anomaly-
related physics from
conventional metallic behavior

Vaa ()] = Vepe™=/"s
ly = /DTy

FIG. 1. Nonlocal Transport Experiment. A source-drain current
L4 is injected into a Weyl semimetal slab of thickness d via tunnel-
ing contacts of thickness L. In the presence of a local ‘generation’
magnetic field By, a valley imbalance Ap is created via the chiral
anomaly and diffuses a distance L > d away. If a ‘detection’ field
By is applied, the valley imbalance can be converted into a potential
difference 7, between top and bottom contacts of size Lg.
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